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Finite-volume/multigrid methods are presented for solving incompressible heat
flow problems with an unknown melt/solid interface, mainly in solidification ap-
plications, using primitive variables on collocated grids. The methods are imple-
mented based on a multiblock and multilevel approach, allowing the treatment of
a complicated geometry. The inner iterations are based on the SIMPLE scheme, in
which the momentum interpolation is used to prevent velocity/pressure decoupling.
The outer iterations are set up for interface update through the isotherm migration
method. V-cycle and full multigrid (FMG) methods are tested for both two- and
three-dimensional problems and are compared with a global Newton’s method and a
single-grid method. The effects of Prandtl and Rayleigh numbers on the performance
of the schemes are also illustrated. Among these approaches, FMG has proven to
be superior on performance and efficient for large problems. Sample calculations
are also conducted for horizontal Bridgman crystal growth, and the performance is
compared with that of traditional single-grid methodsg 1999 Academic Press
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1. INTRODUCTION

Solidification processes, such as casting and crystal growth, involve incompressible
flow and an unknown shape of the solidification (growth) front. In such systems, in addit
to complicated geometry, simulation could become quite challenging due to the strong «
pling of incompressible heat flow and the unknown melt/solid interface shape. Especie
for high Prandtl number materials, the interface is affected significantly by convection. S
eral numerical approaches [e.g., Refs. 1-8] for solving such problems have been propc
They can be categorized, from the formulation point of view, by streamfunction/vortici
(v/w) [2, 3, 6, 7] and primitive (UVP) variables [1, 4, 5, 8], and from the solution poin
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of view, by decoupled [2—6] and global (coupled) [1, 7, 8] iteration approaches. The glo
approaches [1, 7, 8] have shown great robustness, and with the iterative matrix solver
are much more efficient than direct solvers for larger problems. However, as compe
with traditional decoupled point or line iteration schemes, for large problems, especic
for three-dimensional (3D) problems, the iterative matrix solvers still require a tremendc
amount of computer memory and often need the use of supercomputers. This has dis
aged the performance of their 3D calculations in an engineering workstationy ide
approach, which requires more equations for 3D problems, is less efficient than the U
approach. Accordingly, the decoupled UVP method seems to be a better choice for I:
3D applications.

The use of a decoupled method [e.g., 2—6], especially the point iteration approach, c
greatly reduce the memory required. However, most iterative schemes, e.g., the Ga
Siedel method, are good smoothers only for short wavelength errors [9]. For long wa
length errors, the convergence rate is slow. For large problems, the convergence rate
degrades very quickly as the iteration proceeds, especially as the grid is refined. The
vergence rate becomes slower as the problem size increases. Accordingly, multigrid (1
methods that use different meshes to smooth errors with a wider spectrum of wavelen
have been used widely to overcome the difficulty of slow convergence [9, 10]. Very ofte
if the implementation is right, the convergence is not affected by the problem size, anc
operation counts are linearly proportional to the problem size as well. Accordingly, V
methods have been regarded as one of the most effective methods in the computational
dynamics (CFD) community [11, 12]. Many studies [e.g., 13, 14] have reported the s
cessful implementation of MG on incompressible flow applications, and its performance
very impressive. However, applications to free-boundary or free-interface problems
very limited. The work by Farmeet al.[15] seems to be the only application of MG to the
free-surface problem. No applications of MG methods to solidification problems, i.e., w
a melt/solid interface, have been reported.

In the present report, approaches implementing the isotherm migration method (IM
upon a MG incompressible flow solver are presented for solidification problems. The incc
pressible flow solver design is based on a multiblock and multilevel concept for the tre
ment of complicated geometry. In each block/level, a collocated-grid finite-volume meth
(FVM) is used, in which the SIMPLE scheme [16] is used as a smoother. The strategies
interface update based on both V-cycle and full MG (FMG) methods are compared for
and 3D problems. A global Newton’s method used in our previous report [8] is also tes
for comparison purposes. In the next section, the physical model used is described.
FVM/MG implementation based on the multiblock and multilevel concept is discussed
Sections 3 and 4. Section 5 is devoted to results and discussion, followed by conclusior
Section 6.

2. FORMULATION FOR PHYSICAL PROBLEMS

The 2D and 3D steady-state two-phase heat flow problems studied in this report
shown in Figs. 1a and 1b, respectively. The material is partially solidified in a cavity; t
interface is coupled with heat transfer and fluid flow. The upper surface can be eithe
free surface or a solid wall. A simple extension of the two-phase problem is shown
Fig. 1c for horizontal Bridgman (HB) crystal growth, which is one of the major process
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FIG. 1. Schematics of the two- and three-dimensional two-phase heat flow problems: (a) two dimensic
(2D), (b) three dimensional (3D), and (c) horizontal Bridgman crystal growth.

for growing GaAs single crystals [17]. In the HB process, the upper surface is usually o
to the gas environment and is thus a free surface. To focus on the numerical study, we
purposely chosen Fig. 1b for the formulation of governing equations. Other applicatic
can be extended from here easily [e.g., Refs. 18, 19].

As illustrated in Fig. 1b, the temperature on the two ends is fixed; the left tempefature
is higher than the melting poinTy,) of the material inside, while the right temperate
is lower. The other sides of the system are assumed adiabatic. Again, the case with hea
or fixed temperature can also be treated easily if needed. The melt/solid interface pos
h(x2, x3) is unknowna priori, and needs to be solved simultaneously with other fiel
variables. In the applications of crystal growth, which are our major interests, the movernr
of the system (in the order of mm/h) is much slower than the melt velocity. Therefo
the contribution due to the movement of the system is considered only at the interf
to take the heat of fusion into account. The melt is assumed incompressible and the
laminar. The dimensionless variables are defined by scaling the length with the Height
velocity witham/ H, and pressure withma?2,/ H?, wherex, is the thermal diffusivity angm,
the melt density. The dimensionless temperatayés defined ag = (T — Tr) /(Th — Tm).
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With the Boussinesq approximation [20], the conservation equations in dimensionless fi
for 3D steady incompressible laminar flow of a Newtonian fluid in the melt, and he
conduction in the solid, can be described as follows:

Melt
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In the above equationsy, uy, andus are the Cartesian velocities in tixé, x2, andx3
directions, respectively, ard is the pressure. The Prandtl (Pr) and Rayleigh (Ra) numbe
are defined as Rt vy /am and Ra= Bg(Ty — Tm) H3/ (vmarm), Wherevy, is the kinematic
viscosity,s the thermal expansion coefficient, agtihe gravitational acceleration. In Eq. (6),
ks IS the thermal conductivity ratio of the solid and the melt.

To solve the previous governing equations, the following boundary conditions are us

00, x%,x3) =0h;  O(L/H,x% x3) =6, 7
90(x1, 0, x3)/0x2 = 86(x, W/H, x3)/dx% = 0,
30 (x%, x2,0)/9x3 = 30(xt, x?,1)/9ax3 = 0, ®)
and on all melt boundaries, the no-slip boundary condition is used, i.e.,
Uy = Uy = Uz = 0. 9)

For the case with a free surface, the shear stress balance on the free surface is impos

ouq 06 dUs 00
— =Ma—; — =Ma— 10
ax3 axt’ ax3 ax2’ (10)

where the Marangoni number Ma(dy /0T)(Ty — Tm)H/(umam), and uny, is the melt
viscosity. The free surface deformation is neglected in Eq. (10).
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At the melt/solid interface, the thermal flux balance is imposed as
36/0N|m — ks00/9N|s + StPEn - ea) = 0, (11)
as well as the melting-point isotherm
0 =0, (12)

where the Stefan numberStAH /(CpsTy) and the Peclect number B8Jg0sC psH / ki,
AH is the heat of fusion; an@ ps andps are the specific heat and solid density, respectively
Uy is the solidification rate of the interface akd the melt thermal conductivity.

The measure of convective heat transfer is througfiNthaumber as

— 1 (36
Nu=—- [ —d 13
5 5nds (13)
wheren is the unit normal vector at the interface pointing into the melt &igithe surface

area of the interface. For the case without convection (purely conductive heat trans
Nu= (64 — 6c)H/L for ks=1.

3. FINITE-VOLUME METHOD

The physical problem can be easily decomposed into a number of blocks for analy
For example, two blocks are adopted for Fig. 1b: one is for the melt and one for the so
As the complexity of the problem increases, more blocks are needed. Multiple blocks
also be used in the same media, like in the melt. In each block, the finite-volume metl
based on the structured mesh used in the previous report [8] is adopted. The grid a
block interface can be coherent or incoherent. Although the incoherent interface is I
versatile for a complicated domain, its implementation is tedious. Therefore, in this stt
only the coherent interface is considered.

3.1. Coordinate Transformation

Due to the unknown and deformed interface shlapé, x®), structured body-fitted co-
ordinates §1, £2, £3) are adopted for each block. The algebraic coordinate transformati
for both melt and solid phases are performed as follows:

Melt
xt = £LEHh(E? £3), (14)
X2 = E2(E)W/H, (15)
X3 = 3(£9). (16)

Solid
x! = h(g2, &%) + 1N (L/H — h(g?, £9)), 17)
x2 = E2(E)W/H, (18)

x3 = £3(89). (19)
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Interface

FIG. 2. (a) A sample mesh and (b) a 3D finite-volume and labeling scheme.

Here £1(£1), £2(£2), and £3(£3) are stretch functions ranging from 0 to 1 for adjusting
grid distribution. A hyperbolic tangent function with the following form, for example, for
g1, is used,

0.5B (20)

g1 = 0.5[1 + tanh( BI(E"—1)/(Na — 1) — 0'5])],
where B is a stretch constant anldl;: the number of control volumes (CVs) in ti§é
direction. The coordinate transformation defines the boundaries of the CVs. For exam
the corner coordinates of each CV in physical space, as shown in Fig. 2a, are calcul
according to the transformation. The cell faces can be represented by surface vectors
Al AZ andA3. For convenienceré! = A% = Ag3 =1, so the CVs in the computational
domain €1, £2, £%) have unit volume. In the implementatiap, £2, and&® are simply the
loop indicesl, J, andK for the three coordinates. The values of variables in each C
are defined at its geometric center. Since some variables on boundaries are unknow
make coding easier the CVs on the boundaries are also assigned, but their volume is
Grids highly stretched toward the boundaries can be obtained easily by simply increa:
the stretch constari.
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TABLE |
Form of Governing Equations
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3.2. Finite-Volume Integration

After the coordinate transformation, the governing equations can be rewritten in a gen
conservation-law form for each block (g%, £2, £°) as

aéI(C.¢>+D)+Js,,—o (21)

where
J = detox' /ogl].

The variablep and its associated coefficients are listed in Table I. For the convenience
representation, tensor notation (summation on free indices) is adopted here. Also, in Tal
A‘j represents thg/ component of the surface vectt (see Fig. 2b). More importantly,
the driving forces due to pressure gradients and the buoyancy Foace combined and
redefined through a new variahteas

A axk 9P
o] agl  oEl
whereFy is thekth component of the body forde F = Pr Rade;. The advantages of using
this variable have been discussed in our previous report [8].
The finite-volume method simply integrates Eq. (21) over each CV in the computatiol
domain €1, £2, £9). In fact, the integration performed over the physical dometnx?, x3)
is the same as that over the computational domain after coordinate transformation,

AV = J. After the Gauss theorem is applied, the integration over each CV results in a f
balance equation,

(22)

b-m+m-g+n—m+/‘@dvzq (23)
AV

wherel;,i =(e, w, n, s, t, b), represents the fluxes¢ohcross the faces of the CV. Each
of the fluxesl; is made of two distinct parts, namely a convective contributfori=C; ¢)
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and a diffusive contributioh® (=D;). Both I.© and P are approximated with the central
difference scheme. A detailed implementation of this boundary condition and related «
cussions can be found elsewhere [8]. It should be noticed that the FVM formulation
each block is the same. The interface between blocks is set up by equating the fluxes
both sides.

Furthermore, since the pressure variable does not appear explicitly in the contin
equation, the use of linearly interpolated velocity at the cell faces for collocated gr
could lead to the velocity/pressure decoupling or the so-called checkerboard oscillatio
pressure. In orderto amend this, the idea of the Rhie—Chow momentum interpolation sch
[21] is adopted. In other words, the velocity values required for the continuity equation :
interpolated from the momentum equations, rather than linearly from the adjacent nc
values. Furthermore, for incompressible flow, the pressure does not appear explicitly in
continuity equation and only the pressure gradient is meaningful. Therefore, the concej
the pressure correction scheme from the SIMPLE method [16] is adopted.

4. SOLUTION SCHEME

4.1. Strong Implicit Procedure

The approximation from the previous section leads to a general nonlinear form as

abgp — > ahdnb = SAV, (24)
nb

for variable¢, and¢ = u;, u,, uz, P, andé at every CV center for each block. A similar
formulation can also be obtained for the block interfaces. The strong implicit procedt
(SIP) based on the incomplete LU decomposition [22] is then used to solve Eq. (24).
ensure the diagonal dominance, the deferred correction method [23] is also used. Witt
deferred correction, the central difference scheme is allowed for the convection terms
all of the cases considered here.

The assembly of Eq. (24) for all variables and all blocks leads to a sparse block mat
In each block for each variable, there are 9 diagonals for 2D problems, and 19 diago!
for 3D problems. In addition to SIP, other techniques, like the Gauss—Siedel (GS) met|
or preconditioned conjugate gradient (PCG) [24] methods, can also be used. Howevel
memory and performance, the SIP is adopted for each block, and the global iteratio
performed variablewise and blockwise. The performance is found satisfactory for coc
grids, but becomes poor as the grid is refined. In fact, to most of the iterative methods,
convergence becomes slower as the number of equations increases. The convergence
fast only at the initial stage of the iterations, and it degrades rapidly as the iteration proce
further. As mentioned before, this is because only the short wavelength errors are smoa
out efficiently. The long wavelength errors are hard to remove in the fine grid.

4.2. Multigrid Methods

An efficient way of overcoming the difficulties of slow convergence is to use diffel
ent meshes for iterations, i.e., the MG methods. The concept of MG is simple, but
implementation is quite tedious. Careful design of the data structure is crucial to a succ
ful implementation. If a wide spectrum of the wavelength for errors can been seen fr
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different grids, the convergence is expected to be faster. Therefore, to implement MG
each block, we further adopt several grid levels (multilevel) for the MG acceleration. F
simplicity, the finest grid, which describes the shape of each block most accurately, is
up first. After setting up the finest grid, as the level is down for one level, eight contiguo
control volumes (the kid volumes) are coalesced into a larger finite volume (the parent
ume). From there, a simple parent—kid link-list data structure is then set up for computat
Furthermore, there are several approaches to performing MG iterations. Among them
full approximation scheme (FAS) proposed by Brandt [25], which has been widely us
[14, 15], is adopted here. Since the detailed description of FAS can be found elsewl
[25], only a brief description is presented here.

Let us take two grids (levels), the coarse grid (CG) and the fine grid (FG), as an exam
During iteration, the FG formulation of Eq. (24) is rewritten in a matrix form,

Asgr = §, (25)

where A; is the coefficient matrix ang the source term. Since the solution of Eq. (25) is
the most time consuming part, we only iterate it several times. After the iterations, say tf
nonlinear iterations, we can estimate the FG residRadly

R =S — Agr. (26)

This residual is then passed to CG to get the deffrcfThe corresponding CG residiRL
and solutionp. are estimated first by linear interpolation (the so-called restriction step),

E = IfCRf’ (27)
a = Ifc¢f7 (28)

wherel{ is the restriction operator for interpolating the values from FG to CG. Since tl
structure grids are used here, i.e., eight FG CVs are coalesced into a CG CV, the valu
the CG is simply the volume-weighted average from the FG values. The defect dD.CG,
is then estimated by

Dc = Ao — § + E (29)
Now, the next step is to get a solution on Cgz)(with this defect by solving
Acpc = &+ De. (30)

Since the solution on the CG is much cheaper than that on the FG, enough nonlir
iterations (but less than 20) are performed on the CG. After the solution is obtained,
correction valueA ¢ is calculated by subtracting the old value interpolated from &G,
ie.,

Ade = ¢c — . (31)
The FG correctiom\¢x is again obtained by interpolation,

A = Il Ag, (32)
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where 1! is the prolongation operator for interpolating the values from CG to FC
Equations (31) and (32) are the so-called prolongation step. Linear interpolation is fol
to be adequate in this study. The solution on the FG is then updated by

¢ = o7 + Agy. (33)

This new solution is used as a guess for Eq. (25) for further nonlinear iterations on FG. -
MG iteration continues until the solution on the FG converges. Again, the MG accelerat
is done block by block.

4.3. V-Cycle, FMG, and Interface Update

The MG procedure described above can be easily extended to more than two grids. I
we must find the following: (1) a better MG procedure and (2) a better strategy for updat
the interface. Two procedures for MG iterations are used here. With a known geometry,
each cycle, as illustrated in Fig. 3a, the procedure based on the previous section starts
the finest grid (top level) to the coarsest grid (lowest level) for restriction, and the prolong
tionis from the lowest level upward to the top level. Because of its shape, itis also called
V-cycle scheme. After the fixed-geometry MG V-cycle iteration is converged, the interfa
update based on the isotherm migration method (IMM) [8] is performed on the top level,
shown by the dashed line with an arrow in Fig. 3a. The IMM is simply to locate the meltir
point isotherm by interpolation. After the interface shape is obtained, the grid is genere

a Interface update

Grid level

Restriction Prolongation

b

Grid level

FIG. 3. Schemes for multigrid iteration and interface update: (a) V-cycle and (b) full multigrid (FMG).
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using Egs. (17)—(19) before entering the next fixed-grid V-cycle. The same procedure ¢
tinues until the residual for the interface update is reduced to an acceptable tolerance.

Since the initial guess is often far away from the final solution, it may make more set
to obtain a rough solution from the coarsest grid first. This is the original concept of FM
as illustrated in Fig. 3b. As shown, the solution starts from the coarsest grid. After 1
solution is obtained, one (or more than one) grid level is added. The addition of the ¢
level continues until the top level is reached. The interface update can be added ontc
top level like that used in the V-cycle. However, a more consistent way is to add it betwe
levels, as shown by the dashed line with an arrow in Fig. 3b. In fact, FMG with the interfe
update can be seen as a combination of V-cycles with different levels.

There is an additional advantage of FMG. Since the solution is converged for each ¢
of grids, the grid-independent solution can be obtained easily from different levels throt
Richardson extrapolation. As a result, the estimation of discretization errors and the ol
of convergence is possible after two levels of grids have been used. In other words, |
mesh refinement may be implemented if a refinement tree is set up. Furthermore, s
the solutions for coarser grids are only the initial guess for the finest grid, the converge
criteria can be looser. Therefore, another modification can be made by tightening up
convergence tolerance as the grid level goes up. Such a strategy can be used for bott
and interface variables.

It should be pointed out that the IMM scheme can also be used for single-grid approac
somewhat differently. The interface is usually updated more frequently during iteratio
For example, one could update the interface every 50 nonlinear iterations of the field v
ables. Synchronized iterations can also be used by updating the interface right after
temperature iteration. However, such an interface update scheme is less stable becau
isotherms are usually not smooth enough. Hence, it often requires underrelaxation.
example, one may use

h"eW = hod 4+ 4 Ah (34)
or
h"ew — hold 4 46 — 0), (35)

whereq is the relaxation parameter, but this does not force the interface temperature t
the melting point. Using the Stefan condition (Eq. (11)) is also a good way for single-g
methods to update the interface through its residRaady

hnew _ hold +aRy,. (36)

However, the interface temperature has to be set at the melting pein®). Also, the
synchronized iteration scheme is necessary to keep the interface shape stable.

5. RESULTS AND DISCUSSION

Since the performance of IMM relies on the convergence of fixed-grid calculatior
the MG performance on the fixed-grid cases, as well as the benchmark compariso
presented first in the next section. The applications of MG/IMM schemes will be presen
in Section 5.2, followed by an example on the crystal growth application, where bc
buoyancy and thermocapillary flows are important, in Section 5.3.
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5.1. Performance on Fixed-Boundary Problems

The performance on a 2D heated square problem [13, 26] for various Ra numk
(Pr=0.71) is examined firstl. /H = 1. Although P=0.71 is usually used for air in the
benchmark solution, for most oxides Pr is about the same order. Therefore, for the col
nience of illustration, P& 0.71 is used throughout this report even for the cases with pha
change unless otherwise stated. The no-slip boundary condition is used for all bounda
The top and bottom walls are insulated, while the hot wak=() is on the left and the
cold wall ¢ =0) is on the right. For both single-grid (SG) and M@,=u,=P=6=0
is used as the initial guess. Five levels of meshes, from 10 to 160x 160, are used.
For Rg = 10°, less than 50 fine-grid iterations are used for both V-cycle MG and FM:
to achieve a normalized residual norm of 10Using the finest grid alone, it will take
more than 1000 iterations to reach a residual norm of only?.1The calculatedNu are
in excellent agreement, up to four to five digits, with the benchmark results [13, 15, 27]
Ra= 10" to 1¢°. The cases with a 45kewed parallelogram are also conducted, which ar
based on nonorthogonal grids and=R0.1 or 10. Excellent agreement is obtained as well
The CPU time required for MG methods is linearly proportional to the number of equatic
(NEQ); i.e., CPU timex NEQ", n ~ 1. For the single-grid approach,~ 1.8, whilen ~ 1.6
for Newton’s method [8] using the ILU(0) preconditioned GMRES iterative matrix solve
[28, 29], and the dimension of the Krylov subspace is 50. Due to the small converge
radius, for Newton’s method the solution atR4.0* needs to be used as an initial guess fo
higher Ra. Furthermore, for all of the methods, the memory required is about linearly p
portional to NEQ, but the memory required for MG is still much less than that for Newtor
method. More importantly, the CPU time required for NEQ40,000 is less than 50 s for
one calculation on an IBM/590 workstation, which is one to two orders of magnitude fas
than that by the single-grid solution as well as Newton’s method. The memaory requirec
only 30 Mbytes.

The convergence for a 3D heated box problémH =1 andW/H = 1) using a similar
initial guess is illustrated in Fig. 4. As shown, the convergence of MG still outperforms tr

102 }

——— 4-Level MG (56X56X56)
-------- 3-Level MG (28X28X28)
————— 4-Level FMG (56X56X56) |

Normalized residual

10'8 L Il L 1 L
0 50 100 150 200 250 300

Finest-grid iteration number

FIG. 4. Convergence of single-grid and multigrid methods for the 3D heated box problem-at®Ra
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TABLE Il
Rayleigh number
Grid 1¢ 10t 100 100
TxTx7 1.068 2.126 5.210 8.650
14x 14x 14 1.070 2.073 4.569 10.045
28x 28x 28 1.071 2.060 4.396 9.014
56 x 56 x 56 1.071 2.057 4.352 8.735
Grid-independent 1.071 2.056 4.337 8.642
Costaet al.[30] (60 x 60 x 60) 1.071 2.054 4.346 8.69
Fusegiet al.[31] (64 x 64 x 64) 1.088 2.100 4.361 8.77

2 This result of Fusegit al.for Ra= 10° was obtained with a nonuniform grid of 3232 x 32.

of the single-grid method. Again, the convergence of MG is not affected by the proble
size; the convergence rate for three and four levels is almost the same. Furthermore
FMG seems to work better than the V-cycle MG. Clearly, for FMG, by the time the fine
grid is added, its initial guess is good already even though the convergence rate ren
the same. Furthermore, the benchmark comparison with previous calculations [30, 31
Nuis illustrated in Table Il. Again, the agreement is very good, but our results are close
those by Costat al.[30].
The flow patterns and isotherms calculated for the two-block case ferRaare shown

in Fig. 5. Due to the side wall insulation, the flow is quite similar to 2D flow; the flow in th
third dimension is weak. In addition, since the interface is no longer at a fixed temperat
the flow is slightly different from that in a heated box. The comparison of CPU tirr
required for different methods is summarized in Fig. 6, and again FMG appears to be
best method. Due to memory limitation, Newton’s method is excluded from the comparis
for 3D calculations. For NE® 10, the FMG takes about 10 min CPU time on an IBM
workstation, and it is about two orders of magnitude faster than using the finest grid alo

5.2. Performance on Free-Interface Problems

After the MG methods for the fixed-interface problems have been demonstrated,
are now ready to move on to the calculations including an unknown interface. Wk
the melt/solid interface is included, the strategies on locating the interface are import
Figure 7a illustrates the IMM convergence of the interface shape-(R#) by the V-cycle
MG; the MG/IMM iteration scheme is shown in Fig. 3a. As shown, it requires more thar
fixed-grid iterations to converge; the initial guess is the same as befote-adndHowever,
if we monitor the maximum interface positionx@ = 1 during iterations, as shown by the
dashed line in Fig. 7b, 10 iterations are needed to converge. Nevertheless, the final inte
position is quite far away from the initial guess, which also illustrates the robustness of
IMM scheme here. The convergence|af|max is further illustrated in Fig. 7c. Fourteen
interface updates are needed to reduce the normt6 fbd the V-cycle MG (again, the
dashed line). Nevertheless, the number of fine-grid iterations for each interface shay
also significantly reduced as convergence is approached. As a result, the overall CPU
required is much less than that for 14 fixed-grid calculations. E-R&P is used, the inter-
face position will move toward the cold wall even more. The CPU time required will be
bit more as well.
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FIG.7. Multigrid methods for the 2D free-interface probléRa= 10%): (a) interface update using the V-cycle
method (Fig. 3a); (b) convergence of the maximum interface position for V-cycle (dashed line) and FMG (
scheme is shown in Fig. 3b); and (c) convergence of interface corrections for V-cycle and each level of FMG.
converged isotherms are also shown in (b).
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For FMG, the convergence of the maximum interface position is also shown in Fig.
(solid lines). Apparently, the convergence of the interface improves progressively as the
level increases. Clearly, it takes much more interface updates, but mainly on the cog
meshes (lower levels). As the finest level is added, only two to four iterations are requi
to achieve the same accuracy as that by the V-cycle MG/IMM. As a result, the CPU ti
for FMG/IMM is only about one-third of that for the V-cycle MG/IMM. The difference can
be further illustrated in Fig. 7c for the convergence history of the interface hai,ax
for both methods. Interestingly, the convergence rate for the interface using IMM seem
be the same for all levels of meshes; it converges almost linearly. In other words, the m
difference between the V-cycle MG/IMM and FMG/IMM is the initial guess of the interfac
shape for the finest grid that requires most of the CPU time. As shown in Fig. 7c, for FM
by the time the finest level is added, the initial nguyh|nax is small already. As a result,
for the problem with an unknown interface shape, FMG/IMM requires about three tim
more CPU time than that needed for a fixed-grid problem. Furthermore, the convergenc
the FG iterations is progressively speeded up due to the better initial guess from prev
solutions. Therefore, the overall performance leads to the CPU time being less than t
times of that for a fixed-grid problem.

Although the FMG/IMM scheme seems to be satisfactory, further improvement is s
possible. By examining Fig. 7c, it is interesting to note theh|max always has a jump
from one grid level to the other due to interpolation. We also observe that the magnitud
the jump is not affected much by the convergence of the previous level if the converge
of the previous level is down to a certain degree (usually about a two-order decreas
the residual norm). Therefore, the convergence criteria for coarser grids for both field :
interface variables can be loosened. By doing so, we can further reduce the CPU tim
15 to 30% for most cases.

Similar convergence is also obtained for the 3D heated box problem with an interf
(Ra=10%). The results are summarized in Fig. 8. As shown in Fig. 8a, the V-cycle MG/IMI
is still about three times slower than the FMG/IMM. Although the FMG/IMM still requires
about four fixed-grid iterations, the total CPU time for about one million unknowns is le
than 50 min on an IBM RS6000/590 workstation with a good quality of convergence. T
convergence rates of the interface at different levels by FMG, again, are very similal
those of the 2D case, as shown in Fig. 8b. The converged result for temperature and vels
fields is shown in Fig. 8c.

For a further illustration on the robustness and the convergence speed, the resul
Ra= 10 is placed in Fig. 9 for comparisoh;= 1 and zero velocity and pressure are alsc
used for the initial guess. As shown in Fig. 9a, it requires more interface updates for b
MG and FMG. The convergence rate is also slightly slower than that in the previous ce
However, due to the much stronger flow, the interface position is farther away from the ini
position and the isotherms become much more distorted. Even for single-grid calculatic
the convergence for higher Ra is slower as well. In other words, the speedup of the |
schemes remains satisfactory. More importantly, when using the single-grid approach
the finest grid, it is difficult to achieve the same convergence criteria. Furthermore, sil
the side walls for the previous cases are insulated, the interface deformation in the t
dimension is not much. A more deformed interface will be illustrated in Section 5.3 f
crystal growth applications.

Since different levels of grids are used, the order of convergence can be estimated ez
The grid-independent solution is again obtained by Richardson extrapolation from
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FIG. 8. Multigrid methods for the 3D free-interface problgiRa= 10%: (a) convergence of the maximum
interface position for V-cycle (dashed line) and FMG (the scheme is shown in Fig. 3b); (b) convergence of inter
corrections for V-cycle and each level of FMG; and (c) converged isotherms and velocity fields.
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FIG. 9. Multigrid methods for the 3D free-interface probléRa= 10°): (a) convergence of interface correc-
tions for V-cycle and each level of FMG; (b) converged isotherms and velocity fields; and (c) estimated error
Nuas a function of grid size for the 3D fixed-grid and free-interface problems.
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FIG. 10. Effects of Prandtl number (Pr) on the interface convergence of the V-cycle MG and FMG; or
the finest grid results are shown. The numbers of finest grid iterations of FMG and V-cycle MG are indicate
parentheses in the legend.

solutions of the finest two grids. For the results in Figs. 5 and 9b, the erfdugdre., Exg,

as a function of grid spacing on the computational domain is plotted in Fig. 9c. As shov
as the grid is fine enough, second-order accuracy for both cases is obtained. Appare
our FVM approximation is second-order accurate and it is the same as we did before
the 2D problems solved by Newton’s method [8].

Since the heat transfer and fluid flow are strongly coupled in our study, the Prandtl nurr
can also affect the convergence. The convective heat transfer becomes more impo
with the increasing Prandtl number; the interface deformation is increased as well.
illustrate this, we use Ra 10%, and the effects of different Prandtl numbers on the interfac
convergence and the total number of finest grid iterations for MG and FMG are showr
Fig. 10. As shown, for the interface update, the lower the Prandtl number, the faster
convergence speed. However, we are also aware that the convergence of the field varic
especially the velocity, slightly decreases as the Prandtl number increases. As a resul
total fine-grid iteration, and thus the CPU time, is not affected much by the Prandtl numl

5.3. Application to Crystal Growth

In previous calculations, we have demonstrated the convergence and robustness c
MG/IMM schemes, and the FMG/IMM has proven to be the most effective. The fin
example is to apply the FMG/IMM scheme to the HB crystal growth (Fig. 1c). As mentiong
previously, the HB method is one of the major processes for growing GaAs single crys
for optoelectronic devices. The control of the growth interface has been of major intel
to crystal growers because it directly controls the crystal quality. However, because
problem is 3D and the interface shape is unknown and strongly affected by the heat f
both buoyancy and thermocapillary flows, its modeling is regarded as a great challenge i
crystal growth community. The first 3D coupled solution for the open boat configuration w
conducted in our previous paper [19] using a SG/SIMPLE approach. The slow converge
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FIG. 11. Sample calculated results for the horizontal Bridgman crystal growth: (a) conduction(Rade
Ma=0); (b) buoyancy modgRa= 10", Ma=0); and (c) buoyancy and thermocapillary mod&a= 10",
Ma= 10°). The interface shapes are also shown on the right-hand side for comparison; for clarity of illust
tion, the results are based on the grid levél96 x 34 x 34).

of the method for fine grids thus motivates the development of the present methods
simplify the calculation, the crucible is neglected here; in practice, the crucible is very th
The aspect ratiok /H =8 andW/H =2 are now much larger. Also, the thermocapillary
convection is considered (Ma10%). Crystal growth rate (Pe 1072), the heat of fusion
(St=20), and the heat exchange with the environmentB) are also included. A linear
heating profile (in the! direction) is imposed for the environment. Again0.71 is also
used.

The calculated results are shown in Fig. 11. For the case without convection in Fig. 1
the isotherms and the interface shape are not deformed much; the interface shape is
plotted on the right of the figure for comparison. As the buoyancy force<(Ref) is
considered in Fig. 11b, due to the flow the isotherms become quite distorted. As shown
interface deformation in the? direction increases. As the Marangoni convection is take
into account (Ma= 10%) in Fig. 11c, the velocity at the surface becomes much larger due
the thermocapillary force. As aresult, the interface deformation increases. Since the driy
force for the flow at the free surface is proportional to the thermal gradients there, the f|
near the crucible is driven outward; the velocity vectors are more or less perpendicular tc
isotherms at the interface. As a result, near the crucible, the interface shape is sharpen
the flow. In fact, such a small contact angle could induce parasitic hucleation and result
a polycrystalline growth. The convergence of this example is still very good, which will |
illustrated shortly. Therefore, the schemes presented here seem to be promising for cr
growth applications as well as for other solidification problems.
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FIG. 12. Convergence of the maximum interface position for different convection modes using FMG f

Fig. 11.
Furthermore, the performance of the interface update also depends on the conve
modes. As shown in Fig. 12, the case with both flow modes takes the most interface upc
for convergence because its solution is the farthest away from the initial guess. Ever
the number of interface updates for the top level ranges only from 5 to 10, which is s
quite satisfactory. On the contrary, using the finest grid alone for Fig. 11c, the converge
is very slow. A comparison of their convergence is shown in Fig. 13, where we repres
the convergence of the maximum interface position as a function of the number of fine-
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FIG. 13. Comparison of the interface convergence for FMG and single-grid methods for Fig. 11c. SC
updates the interface synchronically with the field variables using Eq. (35wtB.1.
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iterations. As shown, FMG takes about 350 fine-grid iterations for convergence, while
single-grid methods take more than 3000 iterations. In fact, to make the comparison poss
the convergence criteria for the single-grid iterations are also loosened to about 0.01
both field and interface variables. Two interface migration schemes are used for single-
iterations. One updates the interface every 100 iterations of the field variables. The o
updates the interface synchronically with the field variables, which requires a relaxat
parameter of 0.1 to ensure the stability; see also Eq. (35). Through this comparison,
clear that FMG outperforms the traditional single-grid approaches. The method is not c
efficient, but also robust in crystal growth calculations.

6. CONCLUSIONS

Efficient multigrid methods are presented for solving 2D and 3D incompressible fic
problems with an unknown melt/solid interface, mainly for solidification applications. Tt
implementation concept is based on a multiblock and multilevel approach that allows cc
plicated geometry of the problem to be treated. The present schemes are one to two o
of magnitudes faster than the global Newton’s method using the GMRES iterative ma
solver and the single-grid SIMPLE method. The CPU time required for the present schel
is linearly proportional to the problem size. Both V-cycle and full multigrid methods ai
tested for calculating the interface shape using the isotherm migration method. It is fo
that the full multigrid method is the most effective, and its best performance requires ab
two to three times more CPU time than is needed for a similar fixed-grid problem. T
2D and 3D cases with strong buoyancy convection are successfully tested on a workst:
with good quality of convergence. The performance of the scheme is not affected muct
the Prandtl number. Although the convergence for stronger flows is slower, its speedu
not degraded much in our study as long as the coarsest grid remains stable during iterat
The application to a 3D crystal growth problem with buoyancy and thermocapillary flows
further illustrated, and the present schemes outperform the traditional schemes. In princ
the present schemes may be easily extended to time-dependent problems as well as to
free-boundary problems. Local refinement may also be another extension.
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